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Renormalization group for evolving networks
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We propose a renormalization group treatment of stochastically growing networks. As an example, we study
percolation on growing scale-free networks in the framework of a real-space renormalization group approach.
As a result, we find that the critical behavior of percolation on the growing networks differs from that in
uncorrelated networks.
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Evolving networks with a complex distribution of connec-  The second moment of the degree distribut®k) of
tions attract much interest from a wide circle of researchershis growing network diverge&egree is the total number of
[1-5]. The physicists’ contribution to the rapid progress inconnections of a vertex, sometimes it is called “connectiv-
this field is based on the understanding that networks aréy” ). We show that the “percolation threshold” is zernp,
objects of classical statistical mechanics and can be effec=0, that is the percolating clustéhe giant connected com-
tively studied by using standard approaches of statisticaponent exists at eactp+0 (superstability against random
physics. damage The y exponent of the degree distributid?(k)

In this Communication, we demonstrate how a real-space k™ ” of the network is below 3. We find that all the deriva-
renormalization group approadbr positional renormaliza- tives of the relative size of the giant compon&hfp) overp
tion group, which is traditional in critical phenomena theory diverge at the percolation threshold. Moreovst(p<1)
(see, e.g., Refd6—11], and references thergjncan be ap- ~e "% This differs from the corresponding critical sin-
plied to stochastically growing networks. For the demonstragularity for percolation on uncorrelated scale-free networks
tion, we consider a bond percolation problem, although othewith exponenty<3.
models of cooperative behavior on evolving networks can be The network is constructed in the following wg]. The
investigated in a similar way. growth starts from a single edge connecting two vertides (

Percolation on uncorrelated equilibrium networks is well =0). At each time step, each edge of the network transforms
studied [12—-15. In fact, many other cooperative models as shown in Fig. 1{a) with probability g, an edge “creates”
(with discrete symmetry of the order parameter and absenca vertex that is attached to both the end vertices of its
of frustrationg on equilibrium networkqthe spread of dis- “mother” edge, or(b) with the complementary probability
ease$16,17), the Ising and the Potts mod¢Is8], etc) show 1—q, this edge creates a bare vertex. Of course, we can
a behavior similar to that for the percolation. In this respectequally leave an edge unchanged in itéo), and, at first
percolation problems are very representative. sight, the creation of bare vertices seems superfluous. How-

Percolation on a growing network is a more complexever, this inessential feature of the transformation will be
problem than for equilibrium ones. The reason for this com-convenient for us.
plexity is a wide spectrum of correlations, which are inevi- In the particular casg=1, this network turns out to be
tably present in growing networks. Note that the correlationghe simple deterministic graph that was introduced in Ref.
between the degrees of the nearest-neighbor verfit@s
21], which were thoroughly studied in equilibrium networks
[22-29, is only a particular kind of the correlations.

We study the following problem. First we grow an infinite
size network and then consider a classical bond percolation
problem on it. That is, randomly chosen edges of the infinite

network are simultaneously removed. A fractipof edges is /

retained. We use the model of a stochastically growing, un-

directed, highly clustered, scale-free netwfk(see Fig. 1, — o

which is ideally suited for a real-space renormalization group I-q

procedure. In principle, the percolation problem for this net- \ ¢

work can be exactly solved, at least, at some particular case.
We, however, use this model for the demonstration of the
renormalization group method for growing random net- o
works. FIG. 1. Edge transformation which generates the stochastically
growing scale-free network. At each time step, each edge of the
network transforms into one of the two shown configurations with
*Electronic address: sdorogov@fc.up.pt the complementary probabilitiesand 1-q.
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[4] and studied in detail in Ref.26]. This graph =1) calculatingM, we find the average numben, of edges in
belongs to a wide class of deterministic growing networksthe “percolation” configurations of the renormalization
which are currently being intensively studig2i7—29. If g group transformation at amth step:

<1, the growth is stochastic. Ag—0 (but q#0), the net-

work coincides with a network growing by attaching a new PaM=0[3X py_;+2X3p;_1(1-pp_y)+1
vertex to the ends of a randomly chosen edge at each time % 1— 214 (1— 3
step[30]. The latter has practically the same degree distribu- Pn-1(1=Pn-2)"]+(1=Q)Pn—s ®)

. compare Eqs(2) and(3); notice also the multiple, on the
cluster_ed. Indeed,_ the_ network that is generated by the tran Sft-hand side of Eq(3)]. Then,M(p) can be obtained from
formation shown in Fig. 1 has numerous loops of length 3

. . - the following relation:
So it has a large clustering coefficient at any valuej.of 9

tion as the BaralskAlbert model (y=3) but is strongly %

One can easily modify the transformation in such a way “m
that the resulting network will turn out to be exactly the =11 A (4)
Barabai-Albert model in the limiting casg—0 (q#0). Let n=11+2q

us assume that at each time step, each edge creates a new _
vertex which, with probability, is attached to one end ver- where we have taken into account that the number of edges

tex of the edge and, with the same probability, is attached t§! the undamaged network increases by2q times at each
the other end vertex. Aj=1, we again obtain the determin- {ime step of the evolution. _ _
istic graph[4,26], and asg— 0, the network approaches the The final forms of the recursion relation fgr, and the

Barabai-Albert model with zero clusterinf81]. expression for the relative size of the percolating cluster are
We, however, apply the transformation that provides the _
strongly clustered networks at eaghNote that we use trans- Pn+1=PnlAPn(1—py) +1],
formations generating networks with the small-world effect w )
[1], that is, the average shortest-path length of the network M(p)=p[l 1+29pn(2—Pn)
grows logarithmically with the network size. A=1 1+2q '
Simple calculations show that the degree distribution of
the network is scale-free with exponent wherepy=p. One can see that the recursion relationggr
has only two fixed points, 0 and 1. At ampy=p+#0, p,
. In(1+20q) approaches 1 as—, which indicates the presence of the
r=1 In(1+q) ° @ percolating cluster. So, the percolating cluster of this net-

work cannot be eliminated by the random removal of edges
The spectrum of degrees is continuousgat1l. As g de-  at any value of the parametgr

creases from 1 to Oy grows from 14+In3/In2=2.58. .. By using relationg5), we numerically obtain the depen-
to 3. The average number of edges in the network grows adenceM(p) (see Fig. 2 From Fig. Za), one can see that the
(1+2q)t, wheret is the number of a time step. curvesM (p) weakly depend on the parametgif pis large

For demonstration, we use the simplest, rather naive vegnough. The essential difference is visible in the range of
sion of the real-space renormalization group approactsmallp, see Fig. ). The analytical analysis of relatiors)
[6—9,11,32. Let us outline the procedure in application to immediately yields the asymptotic behavior ®(p) at
our network. We stop the grows at a time sfBp>» and  smallp:
spoil the network: if an edge is present in the undamaged
network, then this edge is retained in the damaged network
with the probabilityp. Then we invert the transformation in
Fig. 1 and definen=T—t for the inverted transformation,
which is actually a decimation procedure. Further, we intro-We do not write down the preexponential factor, since our
duce the probabilityp,, that if an edge connects a pair of simplified, demonstrative renormalization group procedure
vertices of the undamaged networktat T—n, then at the certainly cannot give its proper form. In fact, at each step of
nth step of the decimation for the damaged network, there ighe procedure, the complex spectrum of the probabilities of
a connection between these vertices. Heges p. One can  the realization of various edge configurations is renormalized

In(1+2
29 q)p—l}. ©)

M(p<1)~ex;{— q

easily derive the following recursion relation fpy,: to (one can also say, is substituted) kay single 5-function
distribution. If a cooperative model under consideration does
P+ 1=0A0Pa+3PA(1=Pn) + Pa(1=Pn)’]+ (1= )Py not contain frustrations, then usually, this substitution is not

2) dangerougwe discuss only qualitative resultsThis is the
case for percolation. Only faq<1, this approximation can

Its structure is evident from Fig. 1. cause serious problenfs.g., very inaccurate values of the
Let us find the dependence of the relative dizeof the  resulting factor in the exponential of E(6)].
percolating cluster op. Here, for convenience, we defilv Expression(6) shows that all the derivatives d¥l(p)

as the fraction ofedgesthat belong to the giant connected diverge at the percolation threshgdd=0. The type of this
component of the networkthe percolating clustgr So,  divergence differs from that for uncorrelated scale-free net-
M(p=1)=1 in the undamaged network. As is usual, for works with 2<y<3, whereM(p<1)~pY~" and only if
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1 loops in our network. The loops, in principle, may lead to
a) fluctuation effects(These effects are absent in cooperative
models on uncorrelated networks, which have a treelike local
structure).
One has to admit that a real-space renormalization group
0.6 approach has a reputation of an uncontrolled approximation.
M Moreover, in our demonstration, we have used the simplest
04l version of the approach, which has allowed us to obtain ana-
lytical results. In principle, one can use more refined versions
of the real-space renormalization group procederg., see
02r Ref.[10]), where, however, numerical calculations are nec-
essary[33].
0 I I ! We considered one of traditional cooperative models on
undirected growing networks. However, the renormalization
p group approach can also be used as a tool for studying struc-
0.125 tural properties(e.g., a distribution of loop$34], etc) of
b) evolving networks. Directed networks can be considered in a
similar way as for randomly directed percolation on a lattice
[11]. Furthermore, the transformation that we used for gen-
erating the growing random networkee Fig. 1is only a
0.075 simple example and can be easily generaliZgd
M In this communication, the renormalization group ap-
proach was applied to evolving networks. One should men-
tion the applications of a real-space renormalization group
technique to static networks: to small-world networks in Ref.
0.0251 [35] and, recently, to a random network of masses connected
by springs in Ref[36].
In summary, we have applied the real-space renormaliza-
0 0.05 0.1 0.15 0.2 0.25 0.3 tion group procedure to stochastically growing networks. In
p the framework of this approach, we have considered the per-
colation problem for scale-free growing networks with expo-
FIG. 2. (a) Relative size of the percolating clustéd, as the nent v in the interesting regiony<3. The percolation
function of the fraction of retained edggs, The curves correspond  threshold is zerop,=0, but the observed critical behavior
to the values of the parameter 1.0,0.8,0.6,0.4,0.2,0.1,0.05, from gggentially differs from that for uncorrelated networks. Our
top to bottom.(b) The same ata) but in the region of smak. results demonstrate different possibilities of a renormaliza-

. . ) tion group method.
y=23, the relative size of the percolating cluster behaves as

M(p<1l)~e "% (see Ref[15]). This work was partially supported by the Project No.

There are two possible reasons for this difference. Thé?OCTI/1999/FIS/33141. The author thanks A. V. Goltsev
first is the wide spectrum of correlations induced by theand A. N. Samukhin for many useful discussions. Special
growth. The second is the high clustering and numerousghanks to the Centro de $ica do Porto and J. F. F. Mendes.
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