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Renormalization group for evolving networks
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We propose a renormalization group treatment of stochastically growing networks. As an example, we study
percolation on growing scale-free networks in the framework of a real-space renormalization group approach.
As a result, we find that the critical behavior of percolation on the growing networks differs from that in
uncorrelated networks.
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Evolving networks with a complex distribution of conne
tions attract much interest from a wide circle of research
@1–5#. The physicists’ contribution to the rapid progress
this field is based on the understanding that networks
objects of classical statistical mechanics and can be ef
tively studied by using standard approaches of statist
physics.

In this Communication, we demonstrate how a real-sp
renormalization group approach~or positional renormaliza-
tion group!, which is traditional in critical phenomena theo
~see, e.g., Refs.@6–11#, and references therein!, can be ap-
plied to stochastically growing networks. For the demons
tion, we consider a bond percolation problem, although ot
models of cooperative behavior on evolving networks can
investigated in a similar way.

Percolation on uncorrelated equilibrium networks is w
studied @12–15#. In fact, many other cooperative mode
~with discrete symmetry of the order parameter and abse
of frustrations! on equilibrium networks~the spread of dis-
eases@16,17#, the Ising and the Potts models@18#, etc.! show
a behavior similar to that for the percolation. In this respe
percolation problems are very representative.

Percolation on a growing network is a more compl
problem than for equilibrium ones. The reason for this co
plexity is a wide spectrum of correlations, which are ine
tably present in growing networks. Note that the correlatio
between the degrees of the nearest-neighbor vertices@19–
21#, which were thoroughly studied in equilibrium network
@22–25#, is only a particular kind of the correlations.

We study the following problem. First we grow an infini
size network and then consider a classical bond percola
problem on it. That is, randomly chosen edges of the infin
network are simultaneously removed. A fractionp of edges is
retained. We use the model of a stochastically growing,
directed, highly clustered, scale-free network@5# ~see Fig. 1!,
which is ideally suited for a real-space renormalization gro
procedure. In principle, the percolation problem for this n
work can be exactly solved, at least, at some particular c
We, however, use this model for the demonstration of
renormalization group method for growing random n
works.
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The second moment of the degree distributionP(k) of
this growing network diverges~degree is the total number o
connections of a vertex, sometimes it is called ‘‘connect
ity’’ !. We show that the ‘‘percolation threshold’’ is zero,pc
50, that is the percolating cluster~the giant connected com
ponent! exists at eachpÞ0 ~superstability against random
damage!. The g exponent of the degree distributionP(k)
}k2g of the network is below 3. We find that all the deriva
tives of the relative size of the giant componentM (p) overp
diverge at the percolation threshold. Moreover,M (p!1)
;e2const/p. This differs from the corresponding critical sin
gularity for percolation on uncorrelated scale-free netwo
with exponentg,3.

The network is constructed in the following way@5#. The
growth starts from a single edge connecting two verticest
50). At each time step, each edge of the network transfo
as shown in Fig. 1:~a! with probabilityq, an edge ‘‘creates’’
a vertex that is attached to both the end vertices of
‘‘mother’’ edge, or ~b! with the complementary probability
12q, this edge creates a bare vertex. Of course, we
equally leave an edge unchanged in item~b!, and, at first
sight, the creation of bare vertices seems superfluous. H
ever, this inessential feature of the transformation will
convenient for us.

In the particular caseq51, this network turns out to be
the simple deterministic graph that was introduced in R

FIG. 1. Edge transformation which generates the stochastic
growing scale-free network. At each time step, each edge of
network transforms into one of the two shown configurations w
the complementary probabilitiesq and 12q.
©2003 The American Physical Society02-1
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@4# and studied in detail in Ref.@26#. This graph (q51)
belongs to a wide class of deterministic growing networ
which are currently being intensively studied@27–29#. If q
,1, the growth is stochastic. Asq→0 ~but qÞ0), the net-
work coincides with a network growing by attaching a ne
vertex to the ends of a randomly chosen edge at each
step@30#. The latter has practically the same degree distri
tion as the Baraba´si-Albert model (g53) but is strongly
clustered. Indeed, the network that is generated by the tr
formation shown in Fig. 1 has numerous loops of length
So it has a large clustering coefficient at any value ofq.

One can easily modify the transformation in such a w
that the resulting network will turn out to be exactly th
Barabási-Albert model in the limiting caseq→0 (qÞ0). Let
us assume that at each time step, each edge creates a
vertex which, with probabilityq, is attached to one end ve
tex of the edge and, with the same probability, is attache
the other end vertex. Atq51, we again obtain the determin
istic graph@4,26#, and asq→0, the network approaches th
Barabási-Albert model with zero clustering@31#.

We, however, apply the transformation that provides
strongly clustered networks at eachq. Note that we use trans
formations generating networks with the small-world effe
@1#, that is, the average shortest-path length of the netw
grows logarithmically with the network size.

Simple calculations show that the degree distribution
the network is scale-free with exponent

g511
ln~112q!

ln~11q!
. ~1!

The spectrum of degrees is continuous atq,1. As q de-
creases from 1 to 0,g grows from 11 ln 3/ln 252.585 . . .
to 3. The average number of edges in the network grow
(112q) t, wheret is the number of a time step.

For demonstration, we use the simplest, rather naive
sion of the real-space renormalization group appro
@6–9,11,32#. Let us outline the procedure in application
our network. We stop the grows at a time stepT→` and
spoil the network: if an edge is present in the undama
network, then this edge is retained in the damaged netw
with the probabilityp. Then we invert the transformation i
Fig. 1 and definen5T2t for the inverted transformation
which is actually a decimation procedure. Further, we int
duce the probabilitypn that if an edge connects a pair o
vertices of the undamaged network att5T2n, then at the
nth step of the decimation for the damaged network, ther
a connection between these vertices. Here,p05p. One can
easily derive the following recursion relation forpn :

pn115q@pn
313pn

2~12pn!1pn~12pn!2#1~12q!pn .
~2!

Its structure is evident from Fig. 1.
Let us find the dependence of the relative sizeM of the

percolating cluster onp. Here, for convenience, we defineM
as the fraction ofedgesthat belong to the giant connecte
component of the network~the percolating cluster!. So,
M (p51)51 in the undamaged network. As is usual, f
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calculatingM, we find the average numbermn of edges in
the ‘‘percolation’’ configurations of the renormalizatio
group transformation at annth step:

pnmn5q@33pn21
3 1233pn21

2 ~12pn21!11

3pn21~12pn21!2#1~12q!pn21 ~3!

@compare Eqs.~2! and~3!; notice also the multiplepn on the
left-hand side of Eq.~3!#. Then,M (p) can be obtained from
the following relation:

M5 )
n51

`
mn

112q
, ~4!

where we have taken into account that the number of ed
in the undamaged network increases by 112q times at each
time step of the evolution.

The final forms of the recursion relation forpn and the
expression for the relative size of the percolating cluster

pn115pn@qpn~12pn!11#,
~5!

M ~p!5p)
n51

`
112qpn~22pn!

112q
,

wherep05p. One can see that the recursion relation forpn
has only two fixed points, 0 and 1. At anyp05pÞ0, pn
approaches 1 asn→`, which indicates the presence of th
percolating cluster. So, the percolating cluster of this n
work cannot be eliminated by the random removal of ed
at any value of the parameterq.

By using relations~5!, we numerically obtain the depen
denceM (p) ~see Fig. 2!. From Fig. 2~a!, one can see that th
curvesM (p) weakly depend on the parameterq if p is large
enough. The essential difference is visible in the range
smallp, see Fig. 2~b!. The analytical analysis of relations~5!
immediately yields the asymptotic behavior ofM (p) at
small p:

M ~p!1!;expF2
ln~112q!

q
p21G . ~6!

We do not write down the preexponential factor, since o
simplified, demonstrative renormalization group proced
certainly cannot give its proper form. In fact, at each step
the procedure, the complex spectrum of the probabilities
the realization of various edge configurations is renormali
to ~one can also say, is substituted by! a singled-function
distribution. If a cooperative model under consideration do
not contain frustrations, then usually, this substitution is
dangerous~we discuss only qualitative results!. This is the
case for percolation. Only forq!1, this approximation can
cause serious problems@e.g., very inaccurate values of th
resulting factor in the exponential of Eq.~6!#.

Expression~6! shows that all the derivatives ofM (p)
diverge at the percolation thresholdpc50. The type of this
divergence differs from that for uncorrelated scale-free n
works with 2,g,3, whereM (p!1);p1/(32g) and only if
2-2
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g53, the relative size of the percolating cluster behaves
M (p!1);e2const/p ~see Ref.@15#!.

There are two possible reasons for this difference. T
first is the wide spectrum of correlations induced by t
growth. The second is the high clustering and numer

FIG. 2. ~a! Relative size of the percolating cluster,M, as the
function of the fraction of retained edges,p. The curves correspond
to the values of the parameterq: 1.0,0.8,0.6,0.4,0.2,0.1,0.05, from
top to bottom.~b! The same as~a! but in the region of smallp.
en
n,
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loops in our network. The loops, in principle, may lead
fluctuation effects.~These effects are absent in cooperat
models on uncorrelated networks, which have a treelike lo
structure.!

One has to admit that a real-space renormalization gr
approach has a reputation of an uncontrolled approximat
Moreover, in our demonstration, we have used the simp
version of the approach, which has allowed us to obtain a
lytical results. In principle, one can use more refined versi
of the real-space renormalization group procedure~e.g., see
Ref. @10#!, where, however, numerical calculations are ne
essary@33#.

We considered one of traditional cooperative models
undirected growing networks. However, the renormalizat
group approach can also be used as a tool for studying s
tural properties~e.g., a distribution of loops@34#, etc.! of
evolving networks. Directed networks can be considered
similar way as for randomly directed percolation on a latt
@11#. Furthermore, the transformation that we used for g
erating the growing random network~see Fig. 1! is only a
simple example and can be easily generalized@5#.

In this communication, the renormalization group a
proach was applied to evolving networks. One should m
tion the applications of a real-space renormalization gro
technique to static networks: to small-world networks in R
@35# and, recently, to a random network of masses conne
by springs in Ref.@36#.

In summary, we have applied the real-space renormal
tion group procedure to stochastically growing networks.
the framework of this approach, we have considered the
colation problem for scale-free growing networks with exp
nent g in the interesting regiong,3. The percolation
threshold is zero,pc50, but the observed critical behavio
essentially differs from that for uncorrelated networks. O
results demonstrate different possibilities of a renormali
tion group method.
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